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Abstract

I Y J A LIPS I
T . N A i porry d_ DT

-DREX has, at present, two libraries containing subroutines for calculating splines:
IMSL and BSPLIN. A new library has been developed to supplement the IMSL and BSPLIN
routines in the realm of smoothing splines. It is not seif-contained, making frequent use
of subroutines from the BSPLIN library.

The new subroutines offer several advantages over the smoothing spline
subroutines in the IMSL and BSPLIN libraries),

1) The order of the spline may be picked by the usery

2) The second derivative of the spline is not constrained to be zero at its
end-points)’

3) The user of the new subroutines has freedom to choose the number and
positions of the knots of the spline; ar 4

4) The new subroutines have, as input, an extra set of weights, 5§, i=1,N,
which control the stiffness of the spline between each pair of knots.

The new subroutines were initially developed for use in ship hull approximation for
the calculation of boundary layer growth on the hull. For this calculation one needs
splines whose second derivatives are very well behaved. The additional control afforded
by the new subroutines makes them far more suitable for this application than any of the
subroutines currently available in either the IMSL or BSPLIN libraries.
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Résumé

L'ERDA posséde maintenant deux bibliothéques contentant des
sous-programmes pour calculer des splines : IMSL et BSPLIN. Une nouvelle
bibliothéque a été mise sur pied pour compléter les programmes ISML et
BSPLIN dans le domaine des splines de lissage. Elle n'est pas autonome,
faisant souvent appel a des sous-programmes de la bibliothéque BSPLIN.

Les nouveaux sous—programmes offrent plusieurs avantages par
rapport aux sous-programmes de splines de lissage des bibliothéques IMSL
et BSPLIN.

(1) L'utilisateur peut choisir le degré de la spline.

(2) La deuxiéme derivée de la spline n'est pas forcément nulle
a4 ses points extrémes.

(3) L'utilisateur des nouveaux sous-programmes peut choisir le
nombre et le lieu des noeuds de la spline.

(4) Les nouveaux sous-programmes acceptent en entrée un
ensemble supplémentaire de coefficients de pondération éi

i=1, N, qui déterminent la raideur de la spline entre deux
noeuds.

Les nouveaux sous-programmes ont intialement été mis au point
pour l'approximation des coques de navire, notamment pour le calcul de la
croissance des couches limites sur les coques. Pour ce dernier calcul,
il faut utiliser des splines dont la deuxiéme dérivée est parfaitement
définie. Par le contréle accru qu'ils offrent, les nouveaux
sous-programmes conviennent beaucoup mieux & cette application que tous
les sous-programmes existants des bibliothéques IMSL ou BSPLIN.

POUREE o
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NOTATION

- The n™ B-spline of order k {Section 2.1)
- The m™ divided difference operator (Section 3)

- Error of the n'® data point (Section 2.1)

- The spline function (Section 2.1)

- The smoothing functional as used by Reinsch and de Boor (Section 2.1)
- The smoothing functiona! as used in BSMTH (Section 2.1)

- See equation (3.9)

- px? + (1-p)F (Section 2.1)

- px2 + (1-p)F" (Section 2.1)
- The order of the spline (Section 2.1)

- The derivative of the spiine function used as a smoothing criterion
(Section 2.1)

- The number of B-splines used in the spline (Section 2.1)

- The number of knots (Section 2.1)

- The number of data points (Section 2.1)

- Parameter which balances the relative values of F and x2 (Section 2.1)

- Value of p used in the iteration for p in BSMTH (Section 2.5)

- Value of p used in the iteration for p in BSMTH (Section 2.5)
- The value of p after the n' iteration for p in BSMTH (Section 2.5)

- The value of the X2 input by the user (Section 2.5)

- The arc length to the n™ data point (Section §)
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- See equation (2.10)

- See equation (2.19)

- Error weights defined in equation (3.2)

- Abscissa of the n'" data point (Section 2.1)

- See equation (2.11)

- See equation (2.20)

- Ordinate of the n'" data point (Section 2.1)

- See equation (2.21)

- Parameter which balances the relative values of F and X2 (Section 2.1)
- The n'" spline coefficient (Section 2.1)

- Approximation to ﬁn used for numerically stable determination of the x2 of a
spline (Section 2.4)

- The stiffness weight corresponding to the interval between the (n+k-1)" and
the (n+k)™ knot (Section 2.1)

- The Kronecker delta (Section 3)

- The actual error of the n'" data point (Section 3)

- See equation (3.3)

- The chi-square of the spline (Section 1)

- The chi-square of the spline corresponding to the p-value p,; (Section 2.5)
- The chi-square of the spline corresponding to the p-value p,, (Section 2.5)

- The chi-square of the spline corresponding to the p-value p, (Section 2.5)
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1 INTRODUCTION

DREA has, at present, two libraries containing subroutines for calcuiating splines:

BSPLIN® and IMSLZ. The library of subroutines presented here is intended to suppiement
the previous two. It is not self-contained, making frequent use of BSPLIN subroutines.

The subroutines presented here were deveioped because the smoothing spline
routines available in IMSL and BSPLIN were found inadequate for smoothing data digitized
from offset diagrams of ship hulls. The spline representations of the hulls were to be
used in the calculation of hull boundary layer growth. For this application, it is necessary
to have a spline representation of the hull whose second derivatives are very well
behaved. The second derivatives of the hull representation cause accelerations in the
fluid flow around the hull which in turn cause changes in the boundary layer growth. It
was found that the spline subroutines in the IMSL and BSPLIN libraries could not be
controlled sufficiently well that the boundary layer calculations would be unaffected by
splining errors. In particular, the splines were unable to turn sharp corners (near the
bilge, for example) sufficiently rapidly without either cutting the corner or having
‘wiggles' on each side of the corner. Either result induced large errors in the second
derivatives of the spline, the former underestimating the magnitudes of the second
derivatives, the latter overestimating them. It was therefore necessary to deveiop new
subroutines providing greater control over the splines and their derivatives.

The most fundamental subroutine in the new library is BSMTH. It is very similar in
function to the IMSL subroutine ICSSCU (this is an implementation of a program originally
written by Reinsch®) and the BSPLIN subroutine SMOOTH: given the X2 of the spline curve
with respect to given data, a smooth spline approximating the data is determined by
minimizing a functional which measures the ‘'lack of smoothness' of the spline. BSMTH,
however, offers several advantages over the other two subroutines.

1) The order of the spline may be picked by the user. SMOOTH and ICSSCU
are cubic splines only.

2) SMOOTH and ICSSCU constrain the second derivative of the spline to be
zero at its end-points. BSMTH imposes no such constraint.

3) The user of BSMTH has freedom to choose the number and positions of the
knots of the spline. SMOOTH ancd ICSSCU require exactly one knot at each
data point. The freedom to choose the knots allows much greater control
of the spline.

When splining in two dimensions, control of the knots has additional
consequences. For efficient approximation of two-dimensional data, the
knots must form a rectangular lattice (see Reference 1, chapter 17, for
example). ICSSCU and SMOOTH then require the data points to be in a
rectangular lattice. With BSMTH this is no longer necessary.

4) BSMTH has, as input, an extra set of weights, 8,. i=1,N, which contro! the
stiffness of the spline between each pair of knots. If the spline is
required to be flat in some region, then the appropriate 5| is increased. If

the spline is to bend sharply in a different region, the appropriate 5, is




Appendix A

= 1,if P is to be recaiculated.
Via COMMON / PLIMS /
PMIN = Minimum aliowed value of p (See Section 2.5). Default is 1.0E-03
PMAX = Maximum aliowed value of p. Default is 1.0E+08.
Via COMMON /NODFLT/

IMAX : 2xIMAX is the maximum number of divided differences allowed to
find the error in function PRERR (See Section A.4). Default vaiue
is &.

SMFACT: The value of the smoothing parameter used by BSMTH may be
adjusted by using a value of SMFACT not equal to 1. The smoothing
parameter used is, S = SMFACTxNPTxPRERRxx2. The default value
is 1.

Via COMMON /INTEXP/

JDER : The value of JDER used by BSMTH. The integral of the square of

the JDER™ derivative of the spline is minimized (subject to the
constraint that XSQ = 8). If smooth curves are desired a vaiue of
JDER = 2 is appropriate. JDER shouid be non-negative and less than
K. The default value is 2.

DEFAULTS
If IER = O on input then
JDER = 2
SMFACT = 1.0
IMAX = &

T() = (1-K)/(N-K+1), I=1,NKT i.e. knots are uniformly distributed in (0,1)

If IER = 1 on input, then the vales for JDER, SMFACT, IMAX and T(l) must be
input by the user via the COMMON blocks /NODFLT/ and /INTEXP/.

OUTPUT

IER

0, Calculation has been successful

1,i1f JDER > K - 1

2,1f NKT1 < N + K + max(0,K-2xJDER)

3,1f IWK < max(NKT1,Kxx2)

4,1f more than 30 iterations are required to find the correct value
tfor p in BSMTH when splining the data point abscissae. Indicates
numerical difficulties in the solution of the linear system

15




14 Section 6

Appendix A

USER'S GUIDES

Concise guides for the use of the spline subroutines are now given. The

subroutines are listed alphabetically.

A.1 BSMCRV : User's Guide

SUBROUTINE BSMCRV(NPT,X,Y,E,N,K.NKT1,T,WTI,BCOEFX,BCOEFY,R,IWK,WK,ARCL,G,lER)

PURPOSE: Given data points (X{(I),Y(])), I=1,NPT BSMCRV finds a smooth curve
approximating them by splining the abscissae and ordinates separately with respect
to the arc-length along the spline. The arc length at each point is approximated
from the distances between the points. BSMTH is used to spline the abscissae and
the ordinates. The function PRERR is used to determine the smoothing parameter
and the subroutine WTIBEG is used to determine the stiffness weights.

LANGUAGE: FORTRAN

USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB,BSPLIN:BSPLIN/LIB

CALLS subroutines BSMTH, PRERR, WTIBEG

INPUT

NPT : The number of data points.

X : An array of length NPT containing the data point abscissae in
ascending order.

Y : An array of length NPT containing the data point ordinates.

E : The errors of the data points. The smaller the error the closer the
spline will come to that point.

N : The number of B-splines used to represent the spline.

K : The order of the spline.

NKTY = N + K + max(0,K-2xJDER) (see below for a definition of JDER)

T : An array of length NKT1 the first N+K elements of which contain the
knot sequence (in ascending order). The remaining array elements
are used in sybroutine SETUPP.

IER = 0,If JDER, T, WTI and the first NxK elements of R are as on the
previous call to BSMTH (this means that the matrix P need not be
recalculated).
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5 A PARAMETRIC SMOOTHING SPLINE

It is often desired to approximate data by a smooth curve which is not necessarily
a function. The spline approximation must be parametrized in some way. The choice of
the parametriztion is important (see Reference 1, pp.316). [t has been shown that any
approximation of the arc length of the curve provides a good parametrization. It is
usually sufficient to approximate the arc length from the distance between data points.
The parametric spline is then calculated as follows.

1) Calculate the parameter s, at each data point by
S0 = Sne + (W = Y1) + (¥ = Yo )D® (5.1)
2) Spline each of the data sets {(s;,x,).n=1,N} and {(s,,y,),n=1,N}.

This is perfomed in the subroutine BSMCRV, which uses BSMTH to calculate each of the
two sub-splines. Hence, BSMCRV calculates a smooth, parametric spline. The smoothing
parameter for the calls to BSMTH is determined by the function PRERR and the stiffness
weights are determined by the subroutine WTIBEG. In addition, the arc-length is
normalized by the total length of the curve: that is, the parameter used is not the arc-
length but the fractional arc length along the curve. Thus the parameter s varies
between 0 and 1.

An example of a spline generated by BSMCRV is shown in Figure 11. Although the
data points show a large amount of scatter, an excelient, smooth curve has been found to
fit the data. Notice that the crossing of the curve over itself is of no consequence to
BSMCRV.

6 CONCLUDING REMARKS

The computer subroutines presented in this memorandum extend the available
libraries of spline subroutines at DREA. The versatility of BSMTH in comparison with the
BSPLIN subroutine SMOOTH and the IMSL subrouting ICSSCU , make it suitable for use with
a far greater variety of data sets. In particular, the ability to choose the splihe order,
the ability to vary the spline knots independent of the data points, and the ability to
change the 'stiffness' of the spline at specific locations via the stiffness weights, §,,
allow the user far greater control over the spline than is possible with SMOOTH or
ICSSCU. Nor need the choice of inputs for BSMTH be overly difficult. The subroutines
PRERR, WTIBEG and NEWWTI aliow the user to generate reasonable sets of default values
for the smoothing factor, S, and the stiffness weights, §,, input to BSMTH. Finally, the
restriction that the data points be spiined by a function is relaxed if one chooses to use
the subroutine BSMCRV. Thus, the subroutine library provides a smoothing spline which
provides, at once, both ease of use and great freedom and fiexibliity.

e e P
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4 DEFAULT VALUES FOR THE STIFFNESS WEIGHTS

As with the smoothing parameter, it is often not convenient for the user to input the
values for the stiffness weights, §,, n = 1,N-k+1. Two subroutines are provided which
calculate reasonable values for the parameters. The first subroutine, WTIBEG, uses the
data points to calculate the §,. The second, NEWWTI, uses the spline coefficients of a

previously spline approximation of the data to caiculate new values for §,.

Both subroutines use the same principle. Default values for the §, are chosen by
setting §, equal to a predicted value for

/tm1[ gdzx(#] 2,
t

The contributions from each knot interval to the functional F* are then nearly equa! and
the smoothing will not be dominated by one short segment of the curve.

In WTIBEG, it is assumed that m = 2. The second derivative of the spline in any knot
interval may then be approximated by the second partial difference between data points
near that knot interval. Thatis, if x;.; < X < X4, &nd t, < x < t,4 then

i (x) =

9 Yis1 =Y Y- Y1
[ I* l_ } } ( .1)
; ‘

Xjwr = X X Xy

j+1 7 X
NEWWTI| uses a previous spline approximation of the data to approximate the

integral of the m™ spiine derivatives in any knot interval. The m™ derivative of the spline
is calculated at each of the knots and the integral approximated from the linear
interpolation of these values. This yields the formula

Lt
f [f('“)(x)]zdx = “(tmk'tmq)([f(m)(tmk)]z + f(m)(%k)f(m)(tm-k-‘l) +
-1

[F™ (4,112 (4.2)

If the k s m+2, this method is exact since the m" derivative of the spline is then linear
between the knots.

A demonstration of the ability of WTIBEG to choose appropriate choces for the
stiffness weights is shown by the comparison of the splines in Figures 1 and 2. As
explained in Section 2.6, the only effective difference in the calculations of these two
splines is the variation in the stiffness weights.
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If fis suitahly smooth, then the first term on the right side of equation (3.8) remains
small as m increases, while the second term increases rapidly. Thus, for sufficiently large
m and N,

N

N N N
S oy, =Y o = Y by = Y DMeo? = g™ o2 (3.9)

= = = =

so that an estimate for 02 is

N 2
(oo
j=1

N-
2 1 S
o= N-m E

n=1

D,(,;")e is easily calculated from

]

z

D{Pe = DY by, (3.11)
k=1

That is, D,(,}") e; is the m™ divided difference of the data set {0,0,....ej,...0,0}.

Thus, in order to estimate 0'2, and hence S, it is only necessary to have a method
for determining a sufficiently large m. The domination of the divided differences by the

N-m N-m
errors is characterized by a large number of changes in sign between 2 D,(.,}“) y; and E
= =1

D,(,T%'j Y If dominated by the errors, these values should be distribute randomly so that,
on average, one expects (N-m)/2 sign changes. Smooth data should have far fewer. The
number of sign changes in the divided differences is therefore used as a criterion for
determining when the error is dominant.

Figures 8, © and 10 demonstrate the ability of PRERR to calculate appropriate
smoothing parameters. Figure 8 shows a data set obtained from measurements of the
variation of sound speed with depth in the Atiantic Ocean, as splined by an ordinary cubic
spline (the subroutine CUBSPL from the BSPLIN library was used). Figure 8 shows the
same spline with the data points removed so that the curve may be seen more easily. It
can be seen that the curve is not smooth, especially near x = 15. Figure 10 shows the
same data splined using BSMTH with the smoothing parameter calculated by PRERR. The
fit to the data is still excellent but the spline is now smooth.

Al os Y liinn . e




10 Section 3

f the relative magnitudes of the e, accurately reflect the errors of the data collection
process, then averaged over a large number of data sets the average values of each w,
will be equal.

<w> =0 foralln (3.3)
Here angle brackets denote averaging over an ensemble of similar data sets.

Since f(x) is assumed to be a smooth, weli-behaved curve, it should be possible to
fit a spline curve to it with high accuracy. Hence, the X2 of the "best" spline is

NP enz NP
= Z — = Z an ~ No2 (3.4)
n=1 ©n n=1

if it may be assumed that the errors in the data points are uncorrelated and that Np is
sufficiently large.

Let {g;, j=1,N} be any set of numbers. The m™ divided difference of {g;} is a linear
transformation of the g defined iteratively by

0 =8, (3.5)
N N (D p(m- 1 (rﬂ-‘l))g

E Df,'j“) g = 2 mh ) » n=1N-m (3.6)

j=1 j=1 xl'H'm = xn

where 8, is the Kronecker delta. By the Mean Vaiue Theorem, If f(x) is a C™ function,
then for any {x;, J=1.N} there is a & in (X,,Xq4m) SUcCh that

) .
2 D{™ #(x,) L0 (E) (a.7)
=1

Thus, from equation (3.1) one obtains

(m)
ZD("‘)~ f (E) Zo("” (3.8)

=1
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order of the spline is 4 and the smoothing exponent m is 2. Hence, the only difference
between this spline and the spline calculated by SMOOTH arises from the effect of the
stiffness weights. These weights have been decreased near x = 8 and x = 15 to aliow
the spline to bend rapidly there. The stiffness has also been increased between x = 10
and x = 12 to flatten the top of the curve. Notice the absence of wiggies. These
stiffness weights were determined by the subroutine WTIBEG (See Section 4 and
Appendix A.5).

For the spline shown in Figure 3, the order of the spline was increased to 6. In
Figures 4 and 5, the second derivative of the SMOOTH spline and the sixth order BSMTH
spline are shown, respectively. Since the SMOOTH spline is necessarily of fourth order,
its second derivative is piecewise linear.

The spline shown in Figure 6 was obtained by decreasing the spline order to 3, and
reducing the knots as shown. At the positions of the double knots, the spline need no
longer have continuous derivative. Splines with discontinuous derivatives cannot be
obtained from SMOOTH or ICSSCU. For certain data sets they are necessary to obtain an
accurate fit: for example, when splining a ship hull with a chine. The spline shown in
Figure 7 carries this idea one step further. At the triple knots, the spline is no ionger
continuous at all. While a use for a completely discontinuous spline may not be evident,
this example does serve to illustrate the versatility of the subroutine BSMTH.

3 CALCULATION OF INPUT VALUES FOR THE SPLINE X2

The smoothness of the spiines determined by BSMTH, SMOOTH and ICSSCU is

regulated by the input parameter S, the value of the X2 of the resulting spline. It is often
not convenient for the user to supply this input parameter, nor is an appropriate value
likely to be known. In this section an algorithm is described which yields an appropriate
value for the parameter S, given the set of data points to be splined and their associated
errors and assuming that the errors are uncorrelated. Since statistical methods are used,
the algorithm works best when there are more than 15 data points. The algorithm is
implemented in the function subroutine PRERR.

Let (xny,), n = 1,N; be the data points and e, their associated errors. It is assumed
that the data may be derived from some unknown "smooth” curve, f(x), so that

Yo = F(X,) + €, (3.1)

€, is the actual error of the n'™ data point. This must not be confused with e,, which is the

error of the n™ data point estimated by the collector of the data. The e, are known ; the
€, are not.

The actual errors €, may be expressed

€, = wee, (3.2)

TN ey e




8 Section 2.5

2) 8 < X3, : p, is too high. Therefore, set p, =1, X3, =x2, and
P2 ¥ Pmin. After xzz is determined there are, again, two possibilities:

i) §> X2, : p,is too low. Set Py, = Py, and X3, = X2, pj is now
determined such that (ps,S) lies on the straight line

interpolating (p,o, X2,,) and (ppX2)-

i S < x%, p, is too high. However, p cannot be decreased
below p,,. Therefore, the iteration terminates.

b) Once (p,X2,), and (p,.X%,) have been determined the iteration proceeds
as follows:

1) 1f|S - X%,| < §/10, the iteration terminates.

2) 1t X3, - X3, > %%, - XxZ,, then Preq Is determined such that (pp,4.S)
lies on the straight line interpolating (P,,X2,) and (pp,X3y).

3) If X3, - X3, < X3, - X2, then p,,, is determined such that (p,,,,S)
lies on the straight line interpolating (p.X%,) and (p,X3,).

This procedure, though somewhat more complicated than the simple secant
procedure used, for example, in the BSPLIN subroutine SMOOTH (see Reference 1,
chapter 14), converges much more rapidly.

2.6 Examples of splines calculated by BSMTH

As examples of the versatility of BSMTH in comparison with the BSPLIN subroutine
SMOOTH (the IMSL subroutine ICSSCU gives splines very similar to SMOOTH), a simple set
of data points has been splined using both SMOOTH and BSMTH. The input values for the
data point errors, e, and the spline X2 was the same in all cases. These inputs completely
determine the spline calculated by SMOOTH. However, the versatility of BSMTH becomes

apparent when one examines the many qualitatively different curves which can be made
to fit the data using BSMTH. These curves are plotted in Figures 1 to 7.

Figure 1 shows the spline caicuiated by SMOOTH. Notice the wiggles caused by the
inability of the spline to bend rapidly near the points x = 8 and x = 15. The small crosses
below the curve indicte the positions of the breakpoints or knots of the spline. For
SMOOTH, these are necessarily at the data point abscissae, with the exception of the
second and next to last data point.

Figure 2 demonstrates the effect of the stiffness weights in BSMTH. The knots for
this spline were placed at the data points (as are the breakpoints used by SMOOTH). The
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v*, and Y2 are calculated in the subroutine SETUPR during the calculation of Ry

During the iteration for p, the x? is evaluated using equation (2.17) in the subroutine
Xsac. .

2.5 The iteration for p

The spline calculated by BSMTH is required to have a x2 equal to S, a value input by
the user. This is implemented by iterating over the vaiue of a in equation (2.7) until
|x2 - 8| < §/10. In practice, BSMTH iterates over p, defined in equation (2.13) rather
than a.

As a increases from O to 1, the X2 of the spline minimizing G increases from some
minimum value to some maximum value. However, although the linear system of equation
(2.12) is theoretically invertible for any a in (0,1), Ry; is not invertible, and , depending on
the positions of the knots with respect to the data points (see Reference 1, chapter 13),
P,j might not be invertible either. Hence, as a approaches O or 1, there will be numerical

difficulties in the inversion of equation (2.12). For this reason, the aliowed range of «,
and therefore p is restricted. The upper and lower limits for p are denoted p,,, and pq,,,

respectively. p,, is given the default value of 0.001 and p,,,, the default value of 1000.

These values have been found adequate to circumvent any numerical difficulties when
using BSMTH, though they may be changed If desired.

The iteration for p is divided into two steps.

a) First, vaiues of p and their corresponding X%s are determined. These are
denoted (p,,,X?,,), and (p,,,,xz,,,). They are determined as follows.

Let p, denote the n? value of p determined and in the corresponding
X2, The Initial guess for p is p; = 1. The linear system of equation (2.12)

is inverted, and the x2 of the spline is evaluated. There are two
possibilities:

1) S$> X2, : In this case, p, Is too low. Set p, = 1 and X3, = X2,. p, s
set to p,,,. Again there are two cases:

) 8> x’z : py is still too low. However, p cannot be Increased
above p,,.. Therefore, the iteration terminates.

#) S < X3, : p, is too high. Set py, = p, and X2, = X2,. p, Is now
determined such that (p,,S) lies on the straight line

interpolating (p;o, X2,°) and _(p,.,,xz,,.).
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2.4 Calculation of x?

Using equations (2.1) and (2.2), the X? of the spline may be expressed in terms of
Y2, v, P, and B;:

x? = ii RBB; - ziv,ﬁ, +Y? (2.16)
i=1

i=1 j=1

To calculate the spline by evaluating the terms in equation (2.16) poses numerical
difficulties since the X° itself is generally much smalier than any of the three terms, so

that round-off errors become large. To circumvent the problem, the X2 is rewritten in the
following form:

N N N
x2 = EZ RV - 22 VALY, + YR2 (2.17)
n=1

n=1 j=1
where
Y, =B, - 6%, (2.18)
N (Yo - YA By (X
n " Y nlbjx
Vi = Z e 2
n=1 n
N
2 o On-yi?
Y*< = ——————— (2.20)
2
n=1 €n
N
y*; = 2 B Box (X)) (2.21)
n=1

and the ﬁn are some arbitrarily chosen coefficients. The evaluation of the x2 using
equation (2.17) is numerically well-behaved if §, = 8%, The §* are chosen using the
fact that B-spline coefficients closely approximate the functions they represent. That Is,

B, = f(t*) (2.22)
where : ’
(t+ ..+ -1)
t’h = tﬂ k"1 t"*k ! (2-23)

(see Reference 1, pp.171). BSMTH chooses 8*, so that (t* 8%) lies on the piecewise
linear curve interpolating the data points, which has breakpoints at the data points.

SR v IR O s b .



Section 2.3 5

2.3 Evaluation of P, R, and v,

The matrix P, is evaluated in the subroutine SETUPP. Since B, ,(x) is a piecewise
polynomial of order k, the integrais in the definiton of l»"'nj can be evaluated by a series of
integrations by parts.

p k-m
Py = D62 (BT DB X (210
p=1 g=1

if k > 2m, then m-q will become negative. By convention Bj(_ﬂ) (x), for q < O, is defined to

be the q™ integral of B;x(x). The subroutine BSPLVD, from the BSPLIN library, is used to

evaluate the derivatives of the B-splines. If k > 2m, integrals of the B-splines must also
be calculated. This is most easily accomplished by calculating the coefficients of the
knot sequence corresponding to the integral of each B-spline (see Reference 1, page
150) and then using the BSPLIN subroutine BVALUE to evaluate it. However, to calculate
the spline coefficients, k-2m knots must be appended to the knot sequence. Thus the
dimension of the array containing the knots is required to be N, + max(0,k-2m).

Owing to the left continuity of the B-splines as implemented in the subroutines
BSPLVD and BVALUE, and the discontinuity of the higher derivatives of the B-splines, they
cannot be evaluated right at the knots. Instead, they are evaluated at
(0.9998¢, + .0001¢,,,) and (0.0001¢t, + .9899t,,,) for each knot interval.

In practice, P; in equation (2.12) is replaced by P,,/A. where A is a normalizing
factor used to ensure that the elements of P, are of order 1. This averts unwanted

overflows and underfiows. It has no effect on the minimization of G as the factor A can
be absorbed into a redefinition of a. A is defined by

(tNk-t1 )
(N-k+1)2™?

The matrix R; is evaluated in the subroutine SETUPR making use of the BSPLIN
library subroutine BSPLVB to evaluate B,,(x,). This subroutine is a modification of the
subroutine L2APPR in the BSPLIN library.

(2.15)
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for given a, and iterating over a until the spline has the required x2.
2.2 Minimization of G for given a

Using equations (2.1), (2.2), (2.5), and (2.6), the functional G* may be written in the
following form:

N N N
G = Z E ((1-a)Ry; + aPp )86, - 2(1-p)2 VB, + (1-p)¥2 2.7
n=1 j=1 n=1
where
N
Bp.k(xn)Bj,k(xn)
Rp, = (2.8)
2
n=1 en
N t
P pHk m m
Pei = E 5 9 Boulxn)_27_Byuxn) g, (2.9)
=1 S, dx" dx™
= -1
N
]
¥nB; k(Xn)
;= Z —_— (2.10)
n=1 en
No v,2
2
v2 = Z = (2.11)
n=1 ©n
G" Is minimized with respect to the spline coefficients, 8, when
N
E (Roj + PPB; = v, (2.12)
=1
where
pu2 (2.13)

1-a

Since both P,j and R,j are symmetric, banded, positive deﬂnlte'matrlces, the subroutines

BCHFAC and BCHSLV in the BSPLIN library are appropriate for the solution of the linear
system in equation (2.12).

H

e crarbens A i s k.
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x? measures the degree to which the curve approximates the data and is minimized when
the curve interpolates the data.

The second functional is a measure of the smoothness of the spline function. Its
definition relies on the observation that, for a smooth function, the average values of its
high order derivatives will be considerably lower than those of a ‘wiggly' function. Hence,
one uses the functional

XN

2
F= /’ [df(x) ]ﬂ,x (2.3)
x dx?

1

as a measure of the smoothness of the spline.

The spline desired is that which has a given x2 while minimizing F. In practice, this
is found by finding the spline which minimizes the functional

G = ax? + (1-a)F (2.9)

for given «. Since G is quadratic in the spline coefficients Bn, this amounts to the solution

of a linear system. An iteration is then done to find the vaiue of a for which X2 has the
required value. As implemented by Reinsch and de Boor, the splines are necessarily
cubic, and the knots are constrained to be the data point abscissae, x,, n=1N.

A shortcoming of the above algorithm is that the second derivative of the spline is
minimized even in places where one might expect it to be high: that is, where the data
shows a pronounced bend. This probiem has been avoided in BSMTH by generalizing the
functional F to

e
o Nﬁ Bn‘/-tnﬂ [.‘%("’,‘l]zdx (2.5)
n=1 t,

The basis for the linear space of spline functions has been chosen to be the B-spline
basis (see Reference 1, chapter 9). The n' B-spline of order k is denoted B, ,(x) and the
knots of the spiine are denoted t,, n = 1,N,.

The coetficients §, can be used to alter the 'stiffness' of the spline between the
pair of knots,(t,.,,y.thx42). In regions where the spline curve is required to be very fiat,
the &, will be large. In regions where the spline is expected to have high curvature, the
&, will be small.

The required spline is found by minimizing the functional

G = ax?+ (1-a)F" (2.8)

ey

Fa b
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decreased. Two subroutines, WTIBEG and WTINEW (see Section 4) are
provided which calculate appropriate default values for the stiffness
weights from the data points or from previous spline fits to the data,
respectively.

&) SMOOTH and ICSSCU implement smoothing by minimizing the second
derivative of the the spline. BSMTH allows one to choose the derivative
which is to be minimized, again allowing more control over the character of
the spline.

BSMTH does have the drawback that it is somewhat siower than the other
subroutines, though usually at most by a factor of two. However, much of the extra time
can often be made up by reducing the number of knots of the spline with no deterioration
in the quality of the fit (the execution time is roughly proportional to the number of
knots). Moreover, when splining in two dimensions, the time savings involved in having
the data points independent of the knots far outweigh the siight inefficiency of BSMTH.

In the following sections the algorithms for each of the subroutines is discussed in
detail. User's guides including sampie runs of the subroutines are given in Appendix A.
The computer code for each subroutine is given in Appendix B.

2 THE BSMTH ALGORITHM

2.1 Implementation of Smoothing

The technique used in ICSSCU and SMOOTH, for constructing a smooth spline curve
through a given set of data is an extension of an algorithm first proposed by Whittaker®

and later considered by Schoenberg®, Reinsch® and de Boor!. The idea is to define two
functionals dependent quadratically on the spline coefficients for which one is solving.

One functional is the X2 of the spline curve,

NP
Yn-f(x,)
x2=2 [ n "]z (2.1)
en
n=1
where

(xmyn)s n=1,N;; are the data points to be interpolated,

e, is the error associated with the n-th data point, and

N
1) = 3 Bufa() (2.2)

n=1

The functions f,(x) are the basis functions for the linear space of spline functions. The

-
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= B, f 0.9xX? of the spline of the data point abscissae is greater than

the value predicted by PRERR.

= 6,If 1.1xXx? of the spline of the data point abscissae is less than

the value predicted by PRERR.

= 7,8, 9, As for IER = 4, 5, and 6 respectively, but for the spline of

the data point ordinates.

BCOEFX: An array of length N containing the B-spline coefficients of the

spline of the abscissae.

BCOEFY: An array of length N containing the B-spline coefficients of the

ARCL

spline of the ordinates.

: An array of length N containing the estimated arc-length at each
data point.

Via COMMON / CHISQ /

X8Q
WORK SPACE

WTI

IWK

WK

= X2 of the spline

: An array of length N which is used to contain the stiffness weights
as calculated by WTIBEG.

: An array of length NPTxIMAX used as work space in the function
PRERR. '

: An array of length 3xKxN
= max(NKT1,Kxx2)

: An array of iength 4xIWK

R G Punaesditinan i
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The following data has been spiined using BSMCRV. The resulting spline has been
plotted in Figure 11.

NPT = 22, N = 28, K = &4, NKT1 = 24, [WK = 24,

WO~ N WN—

The spline coefficients and the fractional arc length values returned by

BSMCRV are

X{J) Y (J) E(J))
-8.24 -8.83 8.3
8.86 8.83 8.3
8.28 8.18 B.3
8.31 8.33 B.3
B.43 8.47 8.3
B.45 B.63 8.3
8.33 8.77 8.3
8.38 8.86 B.3
8.28 8.94 8.3
8.11 8.37 8.3
B.B5 1.83 2.3
-B.88 1.82 8.3
-e.17 1.80 8.3
-B.23 8.97 8.3
-8.31 8.91 B.3
-8.239 B.82 8.3
-8.33 B.78 8.3
-8.38 B.S8 8.3
-8.15 8.45 8.3
8.86 8.33 8.3
8.26 8.11 8.3
8.66 8.83 8.3

A T

IER = B
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J  BCOEFX(J)
1 -8.35219

2 -B.139668

3  -B.3977gE-B1
4 B.18354

5 B.2463%

6 B.37681

7 B.46363

8 B.40611

9 B.2453%

18 8.56733E-81
11 -8.13699

12 -B.32258

13 -B.34448

14  -8.21208

15 -8.53392E-01
16 B8.11148

17 B.27779

18 B.44B69

19 B.62444
28 8.88006

21

22

The values returned via COMMON / CHISQ / are

BCOEFY (J)
-8.20888
-8.18375
-0.19646E-81
B.11428
. 270845
.43383
.Bl444
. 79668
.87128
1.8224
1.8425
.88117
.69866
.53258
.39341
. 26571
.142582
.43413E-01
. 14056E-81
.31815E-81

[SECE T T

OO

ARCL (J)
2.000088E+00
8.98250E-81
B.14756
8.21378
B.25486
B.2393818
8.34165
8.36694
8. 48057
8.45154
8.47336
8.51256
8.53832
8.55785
8.58438
8.61621
B.648638
B.67814
B.73545
8.80381
B.88686
1.8088

Appendix A

XSQX = 2.7638BE-@1, XSQY = B8.11B47, SX = 0.71828E-p1, SY « B.11766

R Y W Y
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A.2 BSMTH : User's Guide
SUBROUTINE BSMTH(S,JDER,NPT,X,Y,E,N,K,NKT 1,T,WTI,BCOEF,R,IWK,WK,IER)

PURPOSE: BSMTH calculates the spline of order K, with knots T(l),I=1,NKT which has chi~
square of S with respect to the data points X(1),Y(1),1=1,NPT, and which has as small

a JDER™ derivative as possible.
LANGUAGE: FORTRAN
USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB,BSPLIN:BSPLIN/LIB

CALLS subroutines SETUPQ, SETUPR, XSQC, SMODAV and INTERV, BCHFAC, BCHSLV from
the BSPLIN library

INPUT

S : The chi-square of the spline with respect to the data will be within
10% of S, if possible. As S is increased the spline becomes
smoother but farther from the data points. Function PRERR can be
used to give a value for S if a reasonabie value is not known.

JDER : The integral of the square of the JDER™ derivative of the spline is
minimized (subject to the constraint that XSQ = S). If smooth curves
are desired a value of JDER = 2 is appropriate. JDER should be non-
negative and less than K.

NPT : The number of data points.

X : An array of length NPT containing the data point abscissae in
ascending order.

Y : An array of length NPT containing the data point ordinates.

E : The errors of the data points. The smaller the error the closer the
spline will come to that point.

N : The number of B-splines used to represent the spline.

K : The order of the spline.

NKT1 = N+ K + max(0,K-2xJDER)

T : An array of iength NKT1 the first N+K elements of which contain the
knot sequence (in ascending order). The remaining array elements

are used in subroutine SETUPP.

WTI : An array of length N of which only the first N-K+1 elements are used
(rather than passing in an otherwise superfiuous argument). WTI(l)

is a weight for the integral of the square of the JDER™ derivative of
the spline between T(i+K-1) and T(I+K). The larger WTI(1) is the

TR N T VI
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smoother the integral will be over this region. These weights are
relative: i.e. changing all the WTI by a constant factor will not
affect the resulting spline.
IER 0,!f JDER,TWT!I and the first NxK elements of R are as on the
previous call to BSMTH ( this means that the matrix P need not be
recalculated )

1,if P is to be recaiculated

Via COMMON / PLIMS /

PMIN

Minimum allowed value of p (See (Section 2.5)). Default is 1.0E-03
PMAX = Maximum allowed value of p. Default is 1.0E+03.

OUTPUT
IER = 0, Calculation has been successful

= 1,IEJDER>K -1

2,1f NKT1 < N + K + max(0,K-2xJDER)

3, If IWK < max(NKT1 Kxx2)

= 4,1f more than 30 iterations are required to find the correct value
for P. Indicates numerical difficulties in the solution of the linear
system

5, If the X2 of the spline > 1.1%S

= 6,1f the X2 of the spline < .9%S

BCOEF : An array of length N containing the B-spline coefficients of the
spline.

Via COMMON / CHISQ /
XSQ = x2 of the -spllne

WORK SPACE
R : An array of length 3xKxN
IWK = max(NKT1,Kxx2)

WK : An array of length 4xIWK

LIRY

-
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The following input data has been splined using BSMTH. A plot of the spline is
shown in Figure 2.

S=18.8, JDER =2 , NPT = 18 , K =4 , N = 18 , NKT = 14

J x{) y{J) E) W)} S uN)]

1 7.8 B.8 8.885 7.8 B.51183E-82
2 8.8 13.5 8.5 7.8 8.55789

3 9.8 15.5 B.5 7.8 1.1778

4 1.0 14.5 8.5 7.8 1.1778

S 1l.8 15.5 8.5 9.8 2.6508

6 12.8 15.8 B.5 18.8 8.88333

7 13.¢ 14.5 B.5 11.8 8.15487E-81
8 14.8 15.8 8.5 12.8

9 15.8 13.5 8.5 13.8

18 16.8 8.8 8.085 14.8

11 16.1

12 16.1

13 16.1

14 16.1

The spline coefficients obtained were

BCOEF (J)
B. 319509k -84
14.83531
14.93398
15, 083396
15.11922
15.83243
15.00048
14.90085
13.18889
2 -2.875628

[

WO UNTHAWN-

and the x? of the spline was

XS@ = 9.8912

i e O B s L
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A.3 NEWWTI : User's Guide
SUBROUTINE NEWWTI(NOLD,BCOEF,NKTOLD,TOLD,NKTNEW, TNEW NWTI,WTI,JDER)

PURPOSE: NEWWT! uses a previously calculated spline fit to predict vaiues for the
stiffness weights §, for use in BSMTH.

LANGUAGE: FORTRAN
USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB, BSPLIN:BSPLIN/LIB
CALLS subroutines SMODAV and BVALUE from the BSPLIN library.
INPUT

NOLD : Number of B-splines for old spline fit.

BCOEF : Array of length N containing the B-spline coefficients for the old
spline fit.

NKTOLD : Number of knots for the old spline fit.
TOLD : Array of length NKT containing the knots for the old spline fit.
NKTNEW: Number of knots for the new spline fit.
TNEW : Array of length NKT containing the knots for the new spline fit.
NWT! : Number of stiffness weights for the new spline fit.
JDER : The order of derivative minimized by BSMTH.

ouTPUT

WTI : Array of length NWTI containing the stiffness weights, 5,

s wein

N B0 g .
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The following input data has been used to generate stiffness weights by NEWWTI.
This data is the output data from the example in Section A.2.

NOLD = 4 , NKTOLD = 14 , NKTNEW = 14 , NWTI = 7 , JDER = 2

N JOLD(S) TNEW(D)
1 7.8 7.8
2 7.8 7.8
3 7.8 7.8
4 7.8 7.8
S 9.0 9.8
6 le.e 18.8
7 11.2 11.2
8 12.8 12.8
K} 13.8 13.8
18 14.8 14.8
11 16.1 16.1
12 16.1 16.1
13 16.1 16.1
14 16.1 1.1

The stiffness weights obtained were

WT1 ()
8.1800PE-02
B.56836E-81
1.1596
8.51772
4.8525
8.14587E-81
8.108880E-02

NOAFrwWNRIC
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A.4 PRERR : User's Guide
FUNCTION PRERR(NPT,X,Y,E,IMAX,G,WK,IFLAG)

PURPOSE: This function calculates the mean error in the data points. The smoothing
parameter used by BSMTH may then be determined by: S = NPTxPRERRxx2.

LANGUAGE: FORTRAN
USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB

CALLS subroutines PARDIF

INPUT
NPT : The number of data points.
X : An array of length NPT containing the data point abscissae in
ascending order.
Y : An array of length NPT containing the data point ordinates.
E : The errors of the data points.
IMAX : The maximum number of partial differences taken is 2xIMAX. The
suggested value for IMAX is 6.
IFLAG = O,If the calculation is to be done from scratch.
= 1,1f X, E and G have not been changed since the previous call.
OUTPUT

PRERR returns the mean error in the data points.

WORK SPACE
WK : An array of length NPT
G : An array of length NxIMAX
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The mean error in the following data has been predicted by PRERR. Splines of this

data are shown in Figure 8, 9, and 10 and are discussed in Section 3.

N = 48, IMAX = &5

Jd X(J) Y(J)

1 2.08 1507.83
2 3.63 1507, 85
3 7.26 1507.81
4 18.99 1587.77
5 12.28 1507.17
6 13.78 1505.82
7 14,18 1502.48
8 14.508 1581.53
9 14.80 1483.58
18 15.28 1488.27
11 15.38 1496.94
12 15.49 1495.83
13 15.78 1434.92
14 16.68 1482.87
15 16.88 1491.84
18 17.38 143@.23
17 18.48 1488.33
18 28.98 1486.22
19 21.80 1484.77
28 22.58 1483.31

PRERR returned the value 0.20361

YOJi
1482.57
1481.83
1488.34
1478.83
1476.17
1475.82
1472.68
1470.38
1468.78
1467.92
1463.25
1464.54
1466.89
1469.74
1475.43
1478.88
1482.65
1487.18
1483.48
1491.48
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A.5 WTIBEG : User's Guide

SUBROUTINE WTIBEG(NPT,X,Y,NKT,T,NWTIWTI)

PURPOSE: WTIBEG uses the data points to calculate values for the stiffness weights §,

for use in BSMTH.

LANGUAGE: FORTRAN

USAGE: EXECUTE mainpgm,BSPLIN:HLLYSP/LIB, BSPLIN:BSPLIN/LIB

CALLS subroutines SMODAV and BVALUE from the BSPLIN library.

INPUT

NPT

NKT

T

NWTI

OUTPUT

wWTI

B e S

The number of data points.

: An array of length NPT containing the data point abscissae in

ascending order.

An array of length NPT containing the data point ordinates.
Number of knots for the spline.

Array of length NKT containing the knots for the spline.

Number of stiffness weights for the spline fit. NWTIl = NKT~2%K+1
where K is the order of the spline.

: Array of length NWTI containing the stiffness weights, §,.
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The foliowing input data has been used to generate stiffness weights in WTIBEG.
The spline obtained from this data is discussed in Section 2.6 and is plotted in Figure 2.

NPT =10 ,NKT =14 ,NWTI =7

J X{J} Y{J) I
1 7.8 8.8 7.8
2 8.8 13.5 7.8
3 3.8 15.5 7.8
4 18.8 14.5 7.8
5 11.8 15.5 9.8
6 12.8 15.2 18.2
7 13.8 14.5 11.8
8 1l4.8 15.8 12.8
S 15.8 13.5 13.8
18 16.8 B.o 14,8
11 16.1
12 16.1
13 16.1
14 16.1

The stiffness weights obtained were

WTI ()
8.51183E-82
8.55789
1.1778
1.1778
2.65808
8.88333
8.15407E-01

NONES WO

Chom & a2 Ly
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Appendix B

SUBROUTINE LISTINGS

C  3oRiRiiloioroR kR KKK AR IKAIIICKI NI AHOIARAHINOK K
C x *
C % THESE COMPUTER SUBROUTINES ARE THE PROPERTY OF THE x
C x CANADIAN DEPARTMENT OF NATIONAL DEFENCE .... *
C 3 x*
C = THEY SHALL BE USED ONLY FOR PURPOSES AUTHORISED *
C % BY THE ODEPARTMENT . .cvverrirnoenconnanannnnss *
C x %
C %= THEY SHALL NOT BE DISCLOSED TO A THIRD PARTY x
C x WITHOUT THE WRITTEN PERMISSION OF THE *
C % DEPARTMENT ...tiiiiiieerernssncsarnnnnnnns *
C x *
C  soopionkionk KKK WK KKK IKAKAIAAAAAAAKIHIKANK
B.1 BSMCRV

SUBROUTINE BSMCRV (NPT, X,Y,E,N,K,NKT1,T,UTI,BCOEFX,BCOEFY,
x R, TWK, WK, ARCL, G, IER)

Given data points (X{I),Y(I)), [=1,NPT BSMCRY finds a smooth

curve approximating them by splining the abscissae and ordinates
separately with respect to the fractional arc-length along the
spline. An approximation for the arc length at each point 1%
obtained from the distances between the points. BSMTH is used to
spline the absissae and the ordinates, PRERR is used to
determine a smoothing factor for the splines and WTIBEG is used
to determine stiffness weights.

AUTHOR: David Hally , May 1981

E:E)(ECUTE mainpgm, BSPLIN:HLLYSP/LIB,BSPLIN:BSPLIN/LIB
CALLS PRERR,BSMTH,WTIBEG

INPUT:

VIA SUBROUTINE ARGUMENTS:

NPT : The no. of data points
X : An array of length NPT containing the data point
Y : An array of iength NPT containing the data point
ordinates.
E : The errors of the data points. The smalier
the error the closer the spline will come

OO00O000000O00000000000000000000
c
OO00OO0O0000000O0O000000000000000000

to that point.
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OOO00000000000COO0000O000000000000000000O0 0000000000000

N
K
NKT1
T

IER

: The no. of B-gplines.
: Tne order of the spline.

N+K+max (8,K-2xJOER)

: An array of length NKT1 the first N+K elements of

which contain the knot sequence. The variable used

to parametrize the curve is the arc length divided by
the total length of the curve. Thus the knots must
span the interval [8,1]. Default gives a unitform
dis*ribution of knots over this interval.

g 1[4 defaults are desired
1 1lf defaults are not desired

COMMON /NODFLT/

IMAX

SMFACT :

JDER

DEFAULTS:

: 2%IMAX is the max. no. of divided differences allowed

to find the error (used in function PRERR}. Default
vaiue is 5

See comments below

COMMON /INTEXP/ :

: The integral of the square of the JDER-th derivative

of the spline is minimized ( subject to the CON-
straint that XSQ=S). QOefault value is 2 .
JOER must not exceed K-1

1f IER = B on input then:

JOER
SMFACT
IMAX
T(1)
OUTPUT:

1ER

BCOEFX

2

1.8

5

{(1-K)/{N-K+1), 1=1,NKT i.e. knots are uniformly
distributed in (8,1)

B . lteration converged

1, If JDER > K-1

2, 14 NKT1 < N+K+MAX(8,K-2%JOER)

3, If INK < max(NKT1,K»x2)

4 , 1f iteration for Pl in BSMTH did not converge

during the spline of the X-values
5, If the chi-square of the spline of the X-values

returned by BSMTH > 1.1xS {i.e, PMAX in BSMTH
is too small)

6, 1f the chi-square of the spline of the X-values
returned by BSMTH < .9xS (i.e. PMIN in BSMTH
is too large)

7.8,8 As for 1ER=4,5,6,respectively, but for the spline
of the Y-vaiues

Array of length N containing the B-spline coefs. for

the X-vaiues of the curve

OO0OO0O0000000000000000000aOOO0O0OO00O000O00O00OO0O0O000000O000emn
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B.6 SETUPP

SUBROUTINE SETUPP (NPT, E, JDER, T,NKT,N,K,WTI,P,A,DB, DBl WK, AL)

SETUPP calculates the matrix P ( see Ref. Manual )
AUTHOR: David Hally , May. 1881
CALLED by BSMTH

CALLS SMODAV
from BSPLIN |ibrary BVALUE,BSPLVD

plvivieinivisieieoielelyl
OO0O0O00COo0000000

REAL T(NKT),P(K,N},A(K,K),DB(K,K),DBl(K,K), NTI(N) HK(NKT)
* E (NPT), Al(K K}, T1, T2,H,HI
INTEGER NKT.JDER.N.K.HNAX,I.J.L.LJI.IKJ,”.II.KH

00

A normalizing factor H is calculated. Normalization by H ensures that
most of the elements of P are of order 1.

He ({T (IN+K)-T (1)) /FLOAT (N-K+1) ) xx (2%JDER-1)

P is initialized and extra points are added to the knot sequence
to allow the calculation of higher order B-splines if necessary
in the integration by parts.

H=H/ (SMODAV (NPT, E) %xx2%xSMODAV (N-K+1,WTI})

DO 18 I=1,K
DO 18 J=1,N
19 P(l,J)=B.
IF (N+K.EQ.NKT)GO 7O 308
DO 28 JaNKT,N+K+1,-1
28 T(J) =T (N+K) x1. 8001
38 MMAX=MIN@ (JOER, K-JOER)

oo0o0

C An iteration over the intervals between knots is begun.

DO 148 leX,N
IF(T{I+1).EQ.T(1})GO TO 148
[1=l-K+1

The derivatives of the B-splines needed in the integration by parts
are calculated using BSPLVD. Due to the left continuity of BSPLVD
the derivatives are evaluated close to but not right at the knots.

T1=.9993%T (1) +.0081%T (1+1)
T2=.8881%x7(1)+.3393%T (1+1)
CALL BSPLVD(T,K,T1,1,A,DB,K)
CALL BSPLVD(T,K,T72,1,A,0B1,K)

(e iele]

C The integrais of the B-splines needed in the integration by parts
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CALL PARDIF (N, X, WK, J, J+1,N=-1}
SENES

J2=U2+2

IF (NSGNCH.GT.0/2.)G0 TD 138
IF{J.GE.IMAX-2)G0 TO 120

GO 10 78

120 SDEV= (D/2. -NSGNCH} /SART (D}

The error is determined from the divided difference by taking the
root mean square of the divided difference values Weighted by
the expected value for a unit error {(given by G(I,J+1)}.
anomalously high values are discarded and the resuiting error
is corrected by muitiplying prerr by l.14

138 DEV=2.8
D0 148 I=J+1,N-J
148 DEV= (UK {1} /G (], J+1) ) %x2+DEV
1F (DEV.EQ.B.B)RETURN
NM2J=N-J2
PRERR=SQRT (DEV/FLOAT (NM2J) ) %x2.8
D0 150 Iw=Jd+l,N-J
IF (ABS (WK (1} /G(],J+1)).LT.PRERRIGD TO 158
DEV=DEV~ (WK (1} /G(1,J+1))*k2
NM2J=NM2J-1
158 CONT INUE
PRERR=SQRT (DEV/FLDAT (NM2J))x1.14

RETURN
END

OO0O0O0
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REAL X{N),Y(N),E(N),WK(N),G (N, IMAX},DEV,D,PRERR 4
INTEGER NSGNCH,NM2J,N,K, IMAX, J, J2,KMIN,KMAX, IFLAG, ]

COMMON /CERR/ SDEV

IMAX=MINB (N/2, IMAX)
SDEV=g.8

PRERR=2.8
IF(IFLAG.EQ.1)GO TO 58

C G is calculated.
DO 18 I=1,N

G({I,)=E(I)
00 18 J=2, IMAX

18 G(l,Ji=B.8
00 3@ I=1,N
DO 28 J=1,N
28 UK(J)=8.8
WK (1) =E(])

00 38 J=1, IMAX-1
KMIN=MAXB (1-J-1,J)
KMAX=MING (I1+J+1,N-J+1)
CALL PARDIF (N, X, WK, J-1,KMIN, KMAX)
IF(I.GT.J)KMIN=KMIN+1
IF (1+J.LT.N+1) KMAX=KMAX-1
D0 38 K=KMIN,KMAX
38 G (K, J+1) =lK (K) 2x24G (K, J+1)
D0 48 J=1,IMAX-1
DO 48 I=J+1 ,N-J
4e G(I,J+1)=SART(G(1,J+1})

C Divided differences are taken until the no. of sign changes is

C greater than that expected for random data. If [MAX-2 iterations
C occur first SDEV is set to the number of standard deviations

C that NSGNCH is below its expected value.

58 00 68 [=1,N
60 WK (1) =Y (])
J=9
J2=0

C The no. of sign changes in the divided differences is determined.

78 NSGNCH=8
JaJ+l
88 DO 98 K=I+1,N-J
IF (WK (I)xddK (K))100,98,118
90 CONTINUE

180 NSGNCH=NSGNCH+1

118 [ =K
IF{I.LT.N-JJGO TO 88
DeN-J2-1

e {
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B.S PRERR

______________ -—-C

This subroutine calculates the mean error in the data points (X,Y)
by taking divided differences until the no. of sign changes in
the I-th divided difference is that expected from random data.
The error is then determined by assuming that the contribution
from the smooth curve underiying the data is negligible.

AUTHOR: David Hally , Jan. 1881

AGE:
EXECUTE mainpgm,BSPLIN:HLLYSP/LIB
CALLS PARDIF

INPUT :
N = No. of data points
X : An array of length N containing the data point
abscissae in ascending order.
Y : An array of length N containing the data point
ordinates.
E : An array of length N containing the relative errors of

the data points. The absolute errors are obtained by
multiplying the returned value of PRERR by the
relative errors.

IFLAG =« B8, If calculation is to be done from scratch
=1, If IMAX,X,E, and G have the same value as in the
previous call
G = Array of dimensions N,IMAX. G(I,J) is the expectation

value of the J-th divided difference given an error
of E(I}) in the I-th data point. If [ER=@ G ls
calculated ; otheruwise it is assumed known.
IMAX ¢ 2xIMAX is the max. no. of divided differences alloued
IMAX = 5 is suggested

OUTPUT
PRERR = The calculated mean error in the data
VIA COMMON / CERR /

SDEV : The no. of sign changes in the divided difference used
to calculate PRERR is greater than that expected for
random data iess SDEV standard deviations

WORK SPACE :

WK (1) OF DIMENSION N

OO0O00O0O000O000O0000000000000O0000O000O0O000O0O000COOOOaon
C
[eleleigieivisivivsielivivisielslisinisivigisinisisivielvisisliginlielininivivisisivivicivivisisisigigiely




Appendix B

B.4 PARDIF
SUBROUTINE PARDIF (N, X,F,J, IMIN, IMAX)

.

39

PARDIF calculates the divided difference of the data points
(X(I),F(I1}),I=IMIN,IMAX. To avoid over- or underflous the X
intervals are normalized by the factor H= (X(N)-X(1))}/N . This is
of no consequence in PRERR since only ratios of partia! diff-
erences are of significance.

AUTHOR: David Haily , May. 1981
CALLED by PRERR

OO0O0OO00000000

e e e e -

REAL X(N),F(N) ,H
INTEGER J, IMIN, IMAX,I,N,IT

H= (X {N) -X (1) ) /FLOAT (N)
DO 18 IT=1,2

0C 18 l«IMIN,IMAX-IT

F(l)ahx (F(I1+1)=F (I3)/ (X{I+IT)=-X(I-J})

DO 28 1=IMAX-2,IMIN,-1

F{l+1)=F (I}
F{IMIN)=B.8
F{IMAX)=8.8
RETURN
END

18
20

OO0O00000000000
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B2=BVALUE (TOLD, BCOEF,NOLD,KOLD, T2, JOER)

WTT (1MW) = (B1x (B14B2) +B2%%2) % (TNEW (1 +KNEW) -TNEW (T+KNEW-1) ) /3.
18 CONTINUE

C The modal average of WT] is determined and UTI(I) is set to
C UTIAV/UTI(])

WTIAV=SMODAV (NWTI,WTI)
IF(LUTIAV.EQ.8.8)G0 TO 3@
WMIN=LUTIAVx1.BE~D3
WMAX=WTIAVX1. BE+83
DO 28 IW=1,NUTI]
DUMMY=WTI (1)
IFCOTI (I LGT.WMIN) AND. (WTT (TW) LLT.WMAXIIUTT (TW) =

x WTIAV/WTI {IW}
IF (DUMMY.GT, WMAXIUTI (1W) =1.BE-B3

28 IF (DUMMY.LE.WMINIWTI (1) =1.8E+83

RETURN
38 DO 48 W=l ,NWTI
4@ KTI(IW}=1.0

RETURN

END

Tt Shned Al o
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B.3 NEWWTI

SUBROUTINE NEWWTI (NOLD,BCOEF,NKTOLD, TOLD, NKTNEW, TNEW,NWTI W
% JDER}
C ——

C NEWWTI uses the previous spline fit to predict values for the
C integral weights WTl for use in BSMTH.

C
C AUTHOR: David Hally , Aug. 1981

C
C USAGE:
EXECUTE mainpgm,BSPLIN:HLLYSP/LIB

CALLS SMODAV
from BSPLIN Iibrary : BVALUE

INPUT:

NOLD = No. of B-splines for old spline fit

BCOEF = Array of Iength N containing the B-spline coefficients
for the old spliine fit

NKTOLD = No. of knots for the old spiine fit

T0LD = Array of length NKT containing the knots for the old
spline fit

NKTNEW = No. of knots for the new spline fit

TNEUW = Array of length NKT containing the knots for the new
spline fit

NWTI = No. of integral weights for the new spline fit

JDER = The order of derivative minimized by BSMTH

OUTPUT:
WTI = Array of length NWT] containing the integral ueights

TI,

wisigielsivisivivicivcicieieisivivisivivinivlinly]

REAL BCOEF (NOLD) , TOLD (NKTOLD) , TNEW (NKTNEW) ,WTT (NWTI},
* B1,B2,T1, T2, WMIN, WMAX, WTIAV, DUMMY
INTEGER NOLD,NKTOLD,NKTNEW,KOLD, KNEW,NWT1, JOER, I, IW

KOLD=NKTOLD-NOLD
KNEW= (NCTNEW-NWTI+1) /2

IU=0

C On each knot interval the integral of the square of the JDER-th
C derivative of the given spline is approximated

DO 18 l=1,NWTI ‘
%E(IﬁE?(I+KNEU-1).EQ.TNEN(I+KNEN))GD T0 18
=ll+
Tle=.9998%xTNEW (] +KNEW-1) +. BBB1xTNEW (] +KNEW)
T2=.0881xTNEW (1 +KNEW-1) +. 9339xTNEW (] +KNEW)
Bl«BVALUE (TOLD, BCOEF,NOLD,KOLD, 71, JDER)

1
]
OO0O00O0O000O0000000000000000000000000)

37
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PHI=P1
Ple.1xPLO+. 3xPHI
GO TO 228

C Similarly, if Pl is very close to PLO, it is possible that XSQ<XSQLO
C In this case PLO is set to P1, XSQLD to XSQ and Pl to .3xPl+,1xPHI

17e IF (XSQ.GT.XSALOIGO TO 188
XSQLO=XSQ
PLO=P1
Pl=.S%PLO+. 1xPHI
GO 70 228

18e IF ((S-XSQLD).LT. (XSQHI-S))GO TO 198
P2= (P1-PHI } % (S-XSQHI } / (XSQ-XSAHI ) +PHI
GO 7O 208

198 P2« (P1-PLO} % (S-XSQALO) / (XSQ-XSALO)+PLD

208 IF (P2.LT.P1)GO TO 218
PLO=P1
XSQLO=XSQ
Pl=P2
IF(PL.GCT.PHI}PL1= (PLO+PHI) /2.
GG TO 228

218 PHl=P1
XSQHI =XSQ
PlaP2
IF(P1.LT.PLO}P1= (PLO+PHI) /2,
220 CONTINUE
IER=4

C BCOEF is returned to its correct value (see comment before call to
C Xsac).

238 00 248 la1,N

248 BCOEF (1) «BCOEF (1) 44K (1,1)
RETURN
END
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I

I
182

l1e

128
138

135
142

145
158

C
c
C
c

168

BCOEF (1) =BCOEF (1) -WK(1,1)
XSQ=XSAC (N,K,BCOEF,R(1,1,2) WK (1,3),HK(1,4),YSQ}

f XSQ is within .1xS of S the iteration terminates.

The first value of XSQ calculated is for : Pl=l. , then Pl=PMIN or
Pl=PMAX depending on whether S is less or greater than XSQU. The third
value of Pl is predicted by linear interpolation of the tuo knouwn
points. The knoun P’s and their corresponding XSQ's are then:
(PLO,XSQLO), (PHI,XSAHI), and (P1,XSQA) respectively. Subsequently
improved values of Pl are predicted by a |inear interpolation

of (P1,XSQ) and either (PLD,XSQLO) or (PHI,XSQHI) depending on
whether S is closer to XSQLO or XSGQHI.

f XSQHI < S or XSQLO > S initially the iteration terminates.

IF (ABS(S-XSQ) .LT.5%.1)G0 TO 238
GO T0(118,138),IT
GO TO 168

IF(S.LT.X5Q)GO 70 128
XSQALO=XSQ

PLO=P1

P1=PMAX

GO 70 228

XSQHI =XSQ
PHI =P1
P1=PMIN
GO TO 228

IF(P1.EQ.PMIN)GO TO 14@
IF(S.LE.XSQ)GO TO 135
1ER=5

GO 70 238

XSQAHI =XSQ
PHI=P1
GO TO 158

IF(5.GE.XSQ)GO TO 145
|ER=G
GO TO 238

XSQALO=XSQ

PLO=P1

Pl= (PH]-PLO) % (S-XSQLO) / (XSQHI -XSALO) +PLO
GO 70 228

It is possible that due to numerical inaccuracy in the evaluation
of XSQ, that XSQ>XSQAHI. This would normaliy oniy occur if Pl is
very close to PHI. Hence PHI is set to P1, XSQHI to XSQ and
Pl to .1xPLO+.39%PHI

IF (XSQ.LT.XSQHIIGO TO 178
XSQHI =XSQ

-
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[ER=1
RETURN

18 iEéNng.GE.NKT+HAXB(B,K—2*JDER))GO TO 28
RETURN

28 }Eé(éuK.GE.NKTl).ANB.(INK.GE.K**Z))GO T0 38
RETURN

C The matrices P and R are calculated in
C SETUPP and SETUPR respectively.

38 IF (IER.EQ.B)GD TO 48
CALL SETUPP (NPT,E, JOER, T,NKTI,N,K,WTI,R(1,1,3),WK, WK (1,2},
% WK (1,3),uWK{1,4),R)

C The array WK(.,1) is determined so that WK(.,l) approximates Y.
C This is necessary for accurate calculation of XSQ.

48 JER=Q
00 68 l=1,N-1
DYSQ=8.
D0 58 Je1,K-1
58 DYSQ=DYSQ+T (1+J)

DYSQ=DYSQ/FLOAT (K-1)
CALL INTERV(X,NPT,DYSQ,LEFT,MFLAG)
IF (MFLAG.EQ.1)LEFT=NPT-1
DYSQ= (DYSQ-X (LEFT) ) / (X (LEFT+1) =X {LEFT)})
60 WK (1,11aY(LEFT) %(1.-DYSQ)+Y (LEFT+1)x0YSQ
WK N, 1) =Y (NPT)
CALL SETUPR(NKT,T,N,K,NPT,X,Y,E,YSQ,R(1,1,2),MK,WK(1,2),HK(1,3))

C An iteration is begun which changes Pl until XSQ is within
C .l1%5 of S

Pl=l,
XSQLO=8. 0
XSQH1«8.8
DO 220 17=1,38
DO 78 l«1,K
00 78 Jal,N-1+1
70 R(I,J,1})=P1aR(1,J,3)+R(],J,2)

C The equation RxBCOEF=VCT is solved by first finding the
C Cholesky factorization of R, then by solving for BCOEF.

CALL BCHFAC(R,K,N,WK(1,4))
DC 88 I=1,N

88 BCOEF (1) =K (1,2)
CALL BCHSLY (R,K,N,BCOEF)

C The chi-square of the solution ie determined.

DO 90 lel,N

e
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over this region. These weights are relative: i.e.
changing all the WTl by a constant factor will not
affect the resulting spline.

g, If JER,T,HT]l and the first NxK elements of R are
as on the previous call to BSMTH ( this means
that the matrix P need not be recalculated )

=1, if Pis to be recalculated

VIA COMMON / PLIMS / :

IER

PMIN = Min. allowed value of P1 ( See comment describing
iteration for correct chi-square }.Default is 1.8E-83

PMAX = Max. allowed value of Pl. Default is 1.PE+@3.

QUTPUT:
IER Calculation has been successful

1f JOER > K-1

I1f NKT1 < N+K+max (8,K-2xJOER)

If IWK < max(NKT1,Kxx2)

I1f more than 30 iterations are required to find the

correct vajue for P. Indicates numerical difficul-

ties in the solution of the |inear system

S, If the chi-square of the spiine > 1.1%5

6, If the chi-square of the spline < .9xS

BCOEF : An array of iength N containing the B-spline coeffi-

cients of the spline,

YIA COMMON / CHISQ / :

LI B B B
PN ®

xsa = the chi-square of the spline
WORK SPACE:

R : An array of length 3xKaN

TUK = max (NKT1, Kxx2)

WK : An array of length 4xIUWK

o000 00000000000000000000000000000000000)

O0O000OO0O00O0O0O00O0000000O000000000000000000000

REAL BCOEF (N}, T(NKT1),WTI (N},R(K,N,3) WK (ILK,4),
* X(NPT), Y (NPT) ,E (NPT),
% P1,P2,PHI,PLO, XSQ, XSAHI , XSQLO, YSQ, ALF,DYSQ, S
INTEGER N,K,NKT,NKT1,JOER,NPT,MFLAG,LEFT, IWK, IER,IT,1,J

COMMON / CHISQ / XSQ,DUmM(3)
COMMON / PLIMS / PMIN,PMAX

DATA PMIN / 1.BE-@3 /,PMAX / 1.0E+B3 /
C The input data is checked for simple errors

NKTaN+K
IF (JDER.LT.K)GO TO 18

At s T
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B.2 BSMTH

SUBROUTINE BSMTH (S, JDOER,NPT, X, Y,E,N,K,NKT1,T,WTI,BCOEF,
* R, IWK, WK, IER)

Appendix B

INPUT:
S

JOER

WTI

OO0 O000000000O00000000000000000000000000000000000000
[omg

BSMTH calculates the spline of order K, with knots T{I},I=1,NKT
which has chi-square of S with respect to the data points
X(I),Y(1),1=1,NPT, and which has as small a JDER-th derivative
as possible.

AUTHOR: David Hally , May 1981
"EXECUTE mainpgm,BSPLIN:HLLYSP/LIB,ESPLIN: BSPLIN/LIB

CALLS SETUPQ, SETUPR, XSQC
from BSPLIN I|ibrary: INTERV,BCHFAC,BCHSLY

: The chi-square of the spline with respect to the data

will be within 18% of S, if possible. As S is
increased the spline becomes smoother but farther
from the data points. Function PRERR can be used
to give a value for S if a reasonable value is not
known,

: The integral of the square of the JDER-th derivative

of the spline is minimized ( subject to the con-

straint that XSQ=S). If smooth curves are desired
a2 value of JDER=2 is appropriate. JOER should be

non-negative and less than K.

: The no. of data points
: An array of length NPT containing the data point

abscissae in ascending order.

: An array of length NPT containing the data point

ordinates,

: The errors of the data points. The smalier

the error the closer the spline will come
to that point.

¢+ The no. of B-splines.
: The order of the spline.

N+K+max (8, K-2xJDER)

: An array of length NKT1 the first N+K elements of
which contain the knot sequence (in ascending order).

the remaining array elements are used in subroutine
SETUPP.

: An array of length N of which only the first N-K+.

elemente are used (rather than passing in an other-
wise superfluous argument). WTI({I) is a weight

for the integral of the square of the JDER-th deriv-
ative of the spline between T(l1+K-1) and T(]4+K). The
larger WTI(]) is the smaller the integral uill be

O0O0OO0O00000000000000000000000000O00O0O0O0000000000000O0
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IMAX=5

JOER=2

DO 48 1=1,N+K
T(1)«FLOAT (1-K} /FLDAT (NWTT)

£
[\M]

The error in the X-values are found by calling the function
PRERR and the integra! weights, WTI, by calling NTIBEG.
They are splined using BSMTH using fractional arc length
to parametrize the data points. Similarly for the Y-values,

NOTE: The parameter SM to be used in BSMTH should be
expected to be NPTxPRERR¥x2.
However, due to the sensitivity- of parametric splines to
data error, it has been found that slightly higher values of
SM sometimes give better results. SMFACT has been included as
a knob to increase (or decrease) SM : SM=SMFACTANPTxPRERR¥x2 .
default value for SMFACT is 1.8.

158 1ER=1
CALL WTIBEG (NPT, ARCL,X,N+K, T,NUTI ,WTI)
SX=SMFACT*PRERR (NPT, ARCL, X, E, IMAX, G, UK, B} 3x2xFLDAT (NPT)
CALL BSMTH (SX, JOER,NPT,ARCL,X,E,N,K,NKTY, T,UTI,BCOEFX,
% R, TWK, WK, 1ER)
XSAX=XSQY
IEA({ER.NE.B).AND.(IER.LT.#))RETURN

SY=SMFACTXPRERR (NPT, ARCL, Y, E, IMAX, G, HK, 1) %k2xFLOAT (NPT)

CALL WTIBEG (NPT, ARCL, Y,N+K, T,NWTI UWTI)

CALL BSMTH(SY, JDER,NPT,ARCL,Y,E,N,K,NKT1,T,WTI,BCOEFY,
* R, IKK, WK, 1ER)

RETURN

END

OO0O0O0O0O0 O0O0O0
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BCOEFY = Array of length N containing the B-spline coefs. for
the Y-values of the curve
ARCL(I) = Arc length at the I-th data point/total length of curve

VIA COMMON / CHISQ /

XSQX = Chi-square of the spline of the abscissae

XSQY = Chi-square of the spline of the ordinates

SX = Required Chi-square of the abscissae ( as determined by

PRERR )

Sy Required Chi-square of the ordinates ( as determined by
PRERR )

VIiA COMMON /CRVLTH/ :

SNEWL : The total arc length of the curve

WORK SPACE :

R : An array of length 3xKxN

TWK = max (NKT1,Kxx2)

WK : An array of length 4xIlK

G : An array of dimensions NPT, IMAX (used by PRERR)

WTI : Agga¥ of length N used for the integral weights for
MTH

OOO00O0O00000000O000000000000000
OO0O0O00000000O000000000000000

REAL X(NPT),Y(NPT),E (NPT}, ARCL (NPT) ,BCOEFY (N) ,BCOEFX(N),
* TINKT1) ,WTI(N),G (NPT, IMAX) , WK (IWK, 4} ,R(K,N, 3},
% SMFACT

INTEGER NPT, N,K,NKT1,NUTI, IWK, IER, IMAX,1,K1,1W, 1D

COMMON /NODFLT/ SMFACT, IMAX
COMMON /INTEXP/ JDER
COMMON /CHISQ/ XsQY, XSQX,SY, SX

NWTI=N-K+1

00

ARCL(1},1=1,N ie initialized by connecting the data pointe with
straight |ines.

ARCL (1)=8.8
DO 18 1=2,NPT
10 ARCL (1) «ARCL (I-1)+SQRT ((X (1) -X(I-1) %2+ (Y(I}-Y(I-1))%x2)
OLDL=ARCL (NPT)
DO 28 i=2,NPT
28 ARCL (1) =ARCL (1) /0LDL

C 1¢f IER.NE.B non-defauit values of SMFACT, IMAX and IMAX are
[ taken from the COMMON block /NODFLT/ and JDER from COMMON /INTEXP/

IF(IER.NE.B)GO TO 158
SMFACT=1.8
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C
»
c

48
S8

68

78
28

99

188
118

129
138
148
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are calculated by calculating the coefs. of the knot sequence
corresponding to the integral of each B-spline and then calling
BVALUE to evaluate these at the appropriate points.

1F (2%JDER.GE.X)GO 70 S8
00 88 J=1,K
IKJ=] -K+J
WK (1KJ) =1.
IF(J.EQ.K)GO TO 58
00 48 L=IKJ+1,141
WK (L)=8.8
00 78 M=1,K-2%JDER
KM=K+M-1
00 68 L=IKJ,[+1
WK (L) =LK (L) % (T (L+KM) ~T (L)} /FLOAT (KM)
[F(L.NE.1JWK (L) =K (L) +WK (L-1)
CONTINUE
Al (J, M) =BVALUE (T,LK,N,K+M, T2, 8)
A(J,M) =BVALUE (T,WK,N, K+, T1,8)
WK(IKJ)=8.8

The elements of P are determined by integration by parts.

0D 138 L=1,K
D0 138 J=1,L
LJlal-J+1
IKJ=] K+
HI =H
[F (MMAX.LT.1)GO 70 118
0BG 120 M=l,MMAX
P(LJL, IKJ) =P (LJ1, IKJY+HI%WTI (11} %(DB1 (L, JDER-M+1) %
* IDB&{J,JDER+N)-DB(L,JDER-H+1)*DB(J.JDER+H))
Hl =~
IF (K.LE.2%JDERIGO TO 130
D0 128 M=1,K-2xJOER
PLJL, IKJ) =P (LJ1, IKJ) +HIxWTI (11) % (AL (L,M)%0B1 (J, JOER
* +HMAX+M) -A (L, M} %0B (J, JDER+MMAX+M) )
Hl=-HI]
CONTINUE
CONTINUE
RETURN
END
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Appendix B
B.7 SETUPR
c SUBROUTINE SETUPR(NKT,T,N,K,NPT,X,Y,E,VYSQ,%,Y1,VCT,VCT1)
c e e - e
C The matrix R, the arrays Y1,VCT and VCT1l, and the number YSU are
C calculated
C ( SETUPR is based closely on L2APPR by Car!| de Boor, in
C A Practical Guide to Splines, p. 255)
C .
E AUTHOR: David Halty , May. 1981
E CALLED BY BSMTH
C CALLS from BSPLIN library BSPLVB
C
c
REAL T(NKT),R(K,N),VCT(N),BIATX(28),X{(NPT},Y(NPT),E(NPT),DU,
* Y1 (N),VCT1 (N), YSQ,DYsSQ
INTEGER N,K,NKT,NPT,LEFT,LEFTMK,I,J,MM,JJ,LL
) YSQ=8.
DO 28 J=1,N
VCT1 (J) =,
VCT(J) =8,
DO 19 I=1,K
R(I,J)=8.
18 CONTINUE
28 CONTINUE
C The LL-th data point is positioned within the knot sequence.
LEFT=K
LEFTMK=8
DO 80 LL=1,NPT
3e IF(LEFT.EQ.NIJGO 7O 48
IF(X(LL) .LT.T(LEFT+1))GO TO 42
LEFT=LEFT+1
LEFTMK =LEF TMK+1
GO TO 38

C R is calculated by calling BSPLVB to evaluate the B-splines at
C the data points.

48 CALL BSPLVB(T,K,1,X(LL),LEFT,BIATX)
DYSQ=Y (LL)
00 58 MM=1,K
0YSQ=DYSQ-BIATX (MM) xY1 (LEFT-K+MM)
50 CONTINUE
DO 7@ MM=1,K
DW=BIATX (MM) /E (LL) %2
J=LEF TMK+MM
VCT1 (J)=VCT1 (J) +0YSQxOW
VCT (J) =OlxY (LL) +VCT ()

- e
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62
7@

88

[=1
D0 88 JJ=MM,K
?(%.J)-BIATX(JJ)*DN+R(I.J)
=]+l
CONTINUE
CONTINUE
YSQ= (DYSQ/E (LL) } xx2+YSQ
CONTINUE
RETURN
END

Appendix B
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B.8 SMODAV

FUNCTION SMODAV (NPT, X)

SMODAV returns a modal average of the numbers in X
AUTHOR : David Hally , Aug. 1981

USAGE :
EXECUTE main-pgm,BSPLIN:HLLYSP/LIB

INPUT -

NPT = No. of values to be averaged
X = Array of length NPT containing values to be averaged

RETURNS:
SMODAV = Modal average of the values in X

OO0OOOO000O000O0O0000000

000000000000 0000000

REAL X(NPT),XBOX(11),SUMBOX (18}, XMIN,XMAX, XRATIO, SCALE, SMODAY
INTEGER [BOX(1@) NPT, 1SUM,NBCX,I,J

The range of the values is found and broken intoc NBOX logarithmic
intervals, such that the ratio of the smalliest to the largest
possibie no. in each interval does not exceed NPT, but also
subject to the constraint 2 < NBOX < 11.

XMIN=1.8E+30

XMAX=1,8E-30

DO 18 I=1,NPT
IF(X(I).LE.B.0)GO TO 1@
XMAX=AMAX1 (X (1), XMAX)
XMIN=AMINL (X (I}, XMIN}

18 CONTINUE

IF (XMIN.EQ.1.8E+38)G0 TO 9@

XRATIO=XMAX/XMIN

NBOX=ALOG18 (XRATIO) /ALOG18 (FLOAT (NPT))

NBOX=MINB (NBOX, 18,NPT/S)

NBOX=MAX8 (3, NBOX)

SCALE=XRATIOxk (1. /NBOX)

XBOX (1} =XMIN

XBOX (NBOX+1} =XMAX

0000

C The no. of X-values within each interval is calculated

DO 28 1=1,NBOX

SUMBOX (1) =8.8
20 IBOX (1) =0
00 38 1=2,NBOX

30 XBOX (1) =XBOX {1-1}%SCALE

e i 2
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DO

40
58
5]

68 I=1,NPT

00 48 J=2,NBOX+1
IF(X(1).LE.XBOX(J))GD TO 5@

SUMBOX (J-1) =SUMBOX (J-1) +X (1)

IBOX {J-1)=1BOX (J-1)+1

Appendix B

C Denote by Xmid the X-value such that there are an equal no. of X-values
C bpoth smaller and greater than Xmid. SMODAV is the average value of all

C the X's in the interval containing Xmid.

1SU
0o

M=8

78 I=1,6NBOX
[SUM«ISUM+IBOX (1)

IF (ISUM.GE.NPT/2)G0 TD 28

78 CONTINUE

88 SMODAV=SUMBOX (1} /1BOX (1)
RETURN

98 SMODAV=R. g
RETURN
END

o e mbm o e s
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B.9 WTIBEG

o0

OO00O0OO00O0O0000000000000000
C

SUBROUTINE WTIBEG (NPT,X,Y,NKT,T,NWTI,WTI)

49

NPT
X
Y

T
NUTI

=
=
4

WTI

OUTPUT:

WTIBEG uses the data points to predict values for the integral
weights WTI for use in BSMTH.

AUTHOR: David Haliy , Aug. 1881

E:
EXECUTE mainpgm,BSPLIN:HLLYSP/LIB
INPUT:

No. of data points

Array of length NPT containing data point abscissae
Array of length NPT containing data point ordinates

No. of knots

Array of length NKT containing the knots
No. of integral ueights ( = no. of B-splines -

order of spline +1 )

Array of length NUTI containing the integral weights

OOOO0OO00O000000N000000000000

x
3

"REAL

X(NPT),Y(NPT), T(NKT} LTI {NWT]),

HL,HR, TL, TR,D1YL,D1YR,D2YDL,D2YDR,D2YTL,D2YTR,

SLOPE, WMIN, WMAX, WTIAV, DUMNY

INTEGER NPT,NWTI,NKT,K,ID,IT, N
K= (NKT-NWTI+1) /2

lst and 2nd derivatives at the first tuo data points and at the
end-points of the first knot interval are approximated by divided
differences.

1TaK

TL=T({K)

[De=l
IL=l

WTI(1)=8.8

HL=X (2) -X (1)

HR=X (3} -X (2}
DlYL=(Y(2)-Y{1))/HL
BlYR«=(Y{3)-Y{2))/HR

D2YOL= (D1YR-D1YL) /7 (X (3) =X (1))
D2YDR=D2YDL

D2YTL=02YDL

SLOPE=.8

Iym«ﬂl "
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The next interval of interest is the interval from the right end of
the current interval to the next data point or the next knot,
whichever occurs first. The contribution to WTI from this interval
is determined.

TR=AMINL (T (I1T+1),X(ID+1))
D2YTR=D2YDL+SLOPE* (TR-X (1D))
WTT (IW) =TT (TW) +HLx (D2YTLx (D2YTL+D2YTR) +02YTRaek2) /3.

IF(IT.EQ.NUTI+K-1)GO TO S8
TL=TR

D2YTL=D2YTR
IF(TR.NE.X(ID+1))G0 T0 32
I1D=]1D+1

D2YDL«D2YDR

DiYL=D1YR

HL =HR

IF{ID.GT.NPT-2)G0O TO 28
HR=X {1D+2) -X (1D+1)

D1YR= (Y (ID+2)~Y(ID+1) ) /HR
D2YDR= (D1 YR-D1YL) /7 (HR+HL)
SLOPE= (B2YDR-D2YDL) /HL
IF(TR.NE.T(1T+1))G0 TO 18
1T=]T+l

TU=ll+l

WTI(IW)=B.8
IF(T(IT+1).NE.T(ITY)GD TO 18
ITelT+l

TW=Il+]

WTI(IUW)=B.2

GO TO 48

C The UT] are normalized so that most of them are of order 1.

WTTAVaSMODAY (NUTI,UTI)
IF(UTIAV.EQ.8.8)G0 TO 78
WMIN=LTIAV%1, BE-83
WMAX=WTIAVxk1. BE+03
00 68 IW=1,NWTI
OUMMY=WTI (1W)
IF CGUTT CIW) LGT.WMIN) AND. (WTT (IW) .LT.WMAX)IUTI (1W) =
WTIAVZUTI (IW)
IF (DUMMY.GT. WMAX)UTI (IW) =1.BE~B3
IF (OUMMY.LE.UMINIWTI (1W)=1.BE+83
RETURN
0C 80 Il=1,NUT]
HTI (IW)=1.8
RETURN
END
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B.10 XsQC
FUNCTION XSQC (N,K,BCOEF,R, VCT, LK. YSQ)
Comm e e e e e - -
C
C XSQC calculates the chi-square:
C XSQ= SUM{ (Y(I)~ SUM{ (BCOEF (J)-Y1(J)aBJ(X(1)) )Ixx2 xE(1) )
C By subtracting Yl from BCOEF one keeps the numbers fairly small
C thus avoiding round-off error.
E AUTHOR: David Hally , May. 1981
C CALLED by BSMTH
;
REAL BCOEF (N) ,R{K,N),VCT{N),WK(N),XSQC, ysSQ
INTEGER I.N,K,d,1J1
XSQC=YSQ
DO 18 ]1,N
ig XSQAC=XSQC-2.%BCOEF (1) xVCT (1)
DO 28 I=1,N
20 WK(l)=B.8
DO 38 1=1,K
00 38 J=1,N-I+1
IJl=]l+J-1
WK (J) =WK (J) 4R (1, JYxBCOEF (1J1)
IF(1.EQ.1)GO TO 38
WK (1J1) =K (TJ1)+R (1, J)xBCOEF (J)
30 CONTINUE
DO 42 I=1,N
48 XSQC=XSQC+WK (1) «xBCOEF (1)
RETURN

END
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